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2006 Result

• Conservative systematic uncertainties are evaluated for 

• Trigger bias  (6 - 15 x 10-3)

• PID background contamination  (2 - 10 x 10-3)

• Uncertainty on the jet pT shift (3 - 16 x 10-3)

• Non-longitudinal components, relative luminosity (small)
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Pion+jet

Rather than imposing the standard SU(2) and SU(3)
symmetry constraints on the first moments of the quark
and antiquark distributions, we allow for deviations

 !U!!D " #F$D%&1$ "SU#2%'; (6)

 !U$ !D! 2!S " #3F!D%&1$ "SU#3%'; (7)

where !F ( &!f1j $ ! "f1j '#Q2
0%, F$D " 1:269) 0:003,

3F!D " 0:586) 0:031 [2], and "SU#2;3% are free parame-
ters. In total we have fitted 26 parameters [16], setting
! "u; "d;"s;g " 0 in Eq. (4). Positivity relative to the unpolarized
PDFs of Ref. [14] is enforced at Q0. In Fig. 1 we compare
the results of our fit using Q " pT to RHIC data from
polarized p-p collisions at 200 GeV [4], included for the
first time in a NLO global fit. The bands are obtained with
the LM method applied to each data point and correspond
to the maximum variations for ALL computed with alter-
native fits consistent with an increase of !"2 " 1 or
!"2="2 " 2% in the total "2 of the fit.

Our newly obtained antiquark and gluon PDFs are
shown in Fig. 2 and compared to previous analyses [6,8].
For brevity, the total !u$!"u and !d$! "d densities are
not shown as they are very close to those in all other fits [6–
8]. Here, the bands correspond to fits which maximize the
variations of the truncated first moments,

 !f1;&xmin!xmax'
j #Q2% (

Z xmax

xmin

!fj#x;Q2%dx; (8)

at Q2 " 10 GeV2 and for [0:001 ! 1]. As in Ref. [8] they
can be taken as faithful estimates of the typical uncertain-
ties for the antiquark densities. For the elusive polarized
gluon distribution, however, we perform a more detailed
estimate, now discriminating three regions in x: [0:001 !

0:05], [0:05 ! 0:2] (roughly corresponding to the range
probed by RHIC data), and [0:2 ! 1:0]. Within each re-
gion, we scan again for alternative fits that maximize the
variations of the truncated moments !g1;&xmin!xmax'. These
sets are allowed to produce a third of the increase in "2 for
each region. In this way we can produce a larger variety of
fits than for a single [0:001 ! 1] moment, and, therefore, a
more conservative estimate. Such a procedure is not nec-
essary for antiquarks whose x shape is already much better
determined by DIS and SIDIS data.

One can first of all see in Fig. 2 that !g#x;Q2% comes out
rather small, even when compared to fits with a ‘‘moder-
ate’’ gluon polarization [6,8], with a possible node in the
distribution. This is driven mainly by the RHIC data, which
put a strong constraint on the size of !g for 0:05 & x &
0:2 but cannot determine its sign as they mainly probe !g
squared. To explore this further, Fig. 3 shows the "2 profile
and partial contributions !"2

i of the individual data sets for
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FIG. 1 (color online). Comparison of RHIC data [4] and our
fit. The shaded bands correspond to !"2 " 1 and !"2="2 "
2% (see text).
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FIG. 2 (color online). Our DSSV polarized sea and gluon
densities compared to previous fits [6,8]. The shaded bands
correspond to alternative fits with !"2 " 1 and !"2="2 "
2% (see text).
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FIG. 3 (color online). The "2 profile (a) and partial contribu-
tions !"2

i (b) of the data sets for variations of !g1;&0:05!0:2' at
Q2 " 10 GeV2.

PRL 101, 072001 (2008) P H Y S I C A L R E V I E W L E T T E R S
week ending

15 AUGUST 2008

072001-3

Inclusive pion
in global fit

New measurement at STAR :  search for a pion opposite to a jet (back-to-back)
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 in global fits comes from jets and pion production at RHIC

 New pp observables can give complementary information

Inclusive

Prompt photons
Heavy quarks

 More exclusive observables Dijets (Star)
Jet + pion (Star)
pion + photon (Phenix)

 More exclusive allows to perform a more detailed selection 

Cuts to enhance some partonic channel
Plot data in term of other variables (enhance sensitivity)

∆G

 DIS data hardly constrains the polarized gluon distribution

 pp observables are sensitive to ∆G

 Important goal of spin program: ∆G
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  Charged pion production

Experimental reason: in inclusive measurements jet is used as a
 trigger for charged pions

2006

• Significant improvements in FOM

• 50% ⇒ 60% beam polarizations

• 1.6 pb-1 ⇒ 5.4 pb-1

• BEMC ! acceptance [0,1] ⇒ [-1,1]

• But ... increased JP trigger thresholds result 
in strong fragmentation bias for charged 
pions in trigger jet

8
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Jet Patch Trigger

• Limit bias by measuring charged pions 
opposite a trigger jet

• Plot asymmetry versus z ! pT(") / pT(trigger 

jet) to cleanly isolate favored fragmentation

Plan of Attack

measure these

trigger here

jet trigger 
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Jet Patch Trigger

• Limit bias by measuring charged pions 
opposite a trigger jet

• Plot asymmetry versus z ! pT(") / pT(trigger 

jet) to cleanly isolate favored fragmentation

Plan of Attack

measure these

trigger here

Introduce bias towards small z (momentum fraction)

A. Kocoloski

(2006) jet threshold at 8.3 GeV
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Jet Patch Trigger

• Limit bias by measuring charged pions 
opposite a trigger jet

• Plot asymmetry versus z ! pT(") / pT(trigger 

jet) to cleanly isolate favored fragmentation

Plan of Attack

measure these

trigger here

On the other hand, if jet is still used as trigger but pions observed on the 
opposite hemisphere 

jet trigger

Measure this one

A. Kocoloski

  Richer kinematics

Plot in terms of z ≡ pπ
T

pjet
T

D(z)

π

jet
pT

pT

  Has a parton-model interpretation 

  Jet + charged pion production

X

z =
pπ

T

pgluon
T
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8

one for π++jet (dashes), in both cases in terms of the transverse momentum of the pion. While

the averages are relatively similar for x, the change is quite clear for the fragmentation fraction

z. Whereas for single-hadron production 〈z〉 ∼ 0.6 − 0.7 remains almost constant over the full

kinematical range, it shows a large variation, from 0.2 to 0.8, when the opposite jet is required.

The rise of 〈z〉 with the transverse momentum of the pion can be easily understood from simple

FIG. 3: Average of the partonic momentum fractions x and z for single pion production (solid) and pion

accompanied by a jet with pjet
T > 10 GeV (dashes).

physical considerations. At the Born level, only two final state partons are produced, with opposite

transverse momentum. For that kinematics, the pion is produced by the fragmentation of one of

the partons, while the jet is just formed by the other one. Therefore, the ratio between the

transverse momentum of the pion and the one of the jet is exactly the hadronization fraction z.

Once a jet cut is applied, selecting the transverse momentum of the pion is equivalent to selecting

the fraction of momentum that is transferred from the parton in the hadronization process. It is

worth noticing that at the Born level, counting with the jet and hadron kinematics allows to fully

reconstruct all the momentum fractions as

z ≡
ph

T

pjet
T

x1 ≡
(

pjet
T exp(ηjet) + pjet

T exp(ηh)
)

/
√

s (3)

x2 ≡
(

pjet
T exp(−ηjet) + pjet

T exp(−ηh)
)

/
√

s.

While those relations are not valid at NLO, since one more parton can be radiated, still one can

observe that there is a strong correlation between the ‘real’ momentum fractions (the arguments

of the parton distributions and fragmentation functions in Eq.(1)) and those obtained from the

D

π

jet
pT

pT

Considering LO kinematics and measuring transverse
 momentum and rapidity of jet and pion

similar to dijets

Or course, naive relations only valid at LO (2 partons)!

3 partons
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 LO calculations for pp collisions are only qualitative 

Higher order corrections can be very sizeable
Scale dependence at LO is very large
More final state partons allow better matching of 
experimental conditions

 NLO corrections become essential for RHIC

Naive relations for  z, x : Do they change at NLO?
Are the asymmetries affected by NLO corrections?
Any cut can enhance the gluon contribution?

Jet structure can be described only from NLO (trivial at LO)
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• One hadron production: factorization formula

p

p
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f
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2

1

D
hf1

f2

f

X

f

!

’

dσpp→hX =
∑

f1,f2,f

∫
dx1 dx2 dz fp

1(x1, µ
2
FI) fp

2(x2, µ
2
FI)

×dσ̂f1f2→fX ′
(x1 p1, x2 p2, ph/z, µFI, µFF , µR) Dh

f(z, µ2
FF)

• fp
i (x, µ2

F): probability density for finding a parton of
type fi in the proton with momentum fraction x ⇒can
not be computed within pQCD, but universal

• Dh
f(z, µ2

F): probability density for finding a hadron
with momentum fraction z in the parton

• In the polarised case "p"p ⇒ σ, fp
i → ∆σ, ∆fp

i

• Asymmetry Ah = ∆σ/σ ≡ (σ++ − σ+−)/(σ++ + σ+−)

jet
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S(pi, jet)

Measurement
function

• One hadron production: factorization formula
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type fi in the proton with momentum fraction x ⇒can
not be computed within pQCD, but universal

• Dh
f(z, µ2
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with momentum fraction z in the parton
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i
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TH description : factorization theorem

pi

LO pjet = p1

NLO pjet = p1 + p2

or pjet = p1
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• σ̂ab is the finite subtracted cross section (with Si the
measurement function)

dσ̂ab→cX ′ ∝
∫

dPS3 |Mab−>c+2partons
tree |2 S3

+

∫
dPS2 |Mab−>c+1parton

1loop |2 S2

+ factorization/renormalizationterms

• Separation of real and virtual contributions ⇒both
infrared divergent, but cancellation in the sum

• KLN theorem: cancellation is not a miracle ⇒∼ 1 to
1 relation (divergent part) between real and virtual
diagrams (different cuts)

• Most efficient would be to combine real and vir-
tual contributions before integration ⇒How?? Not
easy..D.Soper (1997)

• Use Dimensional regularization n = 4 − 2ε to handle
divergences

• Virtual amplitudes available Z.Kunszt, A.Signer, Z. Troc-
sanyi ⇒remaining dPS2 integration trivial (like LO)

• Try to reduce work in the Real case: divergent be-
havior of tree level amplitudes well known

 Computation of NLO corrections complicated

Many channels already at LO : several more at NLO

Real and virtual contributions both divergent : regularization needed 

• σ̂ab is the finite subtracted cross section (with Si the
measurement function)

dσ̂ab→cX ′ ∝
∫

dPS3 |Mab−>c+2partons
tree |2 S3

+

∫
dPS2 |Mab−>c+1parton

1loop |2 S2

+ factorization/renormalizationterms

• Separation of real and virtual contributions ⇒both
infrared divergent, but cancellation in the sum

• KLN theorem: cancellation is not a miracle ⇒∼ 1 to
1 relation (divergent part) between real and virtual
diagrams (different cuts)

• Most efficient would be to combine real and vir-
tual contributions before integration ⇒How?? Not
easy..D.Soper (1997)

• Use Dimensional regularization n = 4 − 2ε to handle
divergences

• Virtual amplitudes available Z.Kunszt, A.Signer, Z. Troc-
sanyi ⇒remaining dPS2 integration trivial (like LO)

• Try to reduce work in the Real case: divergent be-
havior of tree level amplitudes well known

Phase space integrals for 3 particles complicated : analytic for inclusive 
observable, but more complicated for exclusive quantities (1 calculation for 
each observable)

2→ 3 2→ 2

The LO partonic cross sections d∆σ̂c,(0)
ab (v) are calculated from the 2 → 2 QCD scattering

processes, that is, X consists of only one parton, and its phase space is trivial and leads to the

δ(1−w) factor in Eq. (8). We do not need to present the cross sections here, which have been

known for a long time for both the unpolarized and the polarized cases [17]. There are actually

only four generic reactions, qq′ → qq′, qq → qq, qq̄ → gg, and gg → gg; all other processes

follow from crossing if one works in terms of helicity amplitudes for each reaction, keeping all

particles polarized. All tree-level 2 → 2 helicity amplitudes are given in [18]. The four generic

processes give rise to the ten separate LO channels

qq′ → qX

qq̄′ → qX

qq̄ → q′X

qq → qX

qq̄ → qX

qq̄ → gX

qg → qX

qg → gX

gg → gX

gg → qX , (12)

the “observed” final-state parton fragmenting into the hadron. At NLO, we have O(αs) cor-

rections to the above reactions, and also the additional new processes

qq′ → gX

qq̄′ → gX

qq → gX

qg → q′X

qg → q̄′X

qg → q̄X . (13)

A single-inclusive-parton cross section is, of course, not a priori infrared-finite in QCD, but

sensitive to long-distance dynamics through the presence of collinear singularities that arise

when the momenta of partons in the initial or final states become parallel. Such a situation can

appear for the first time atO(α3
s) (NLO), where 2 → 3 scattering diagrams contribute. From the

factorization theorem discussed above it follows that long-distance sensitive contributions may

5

The LO partonic cross sections d∆σ̂c,(0)
ab (v) are calculated from the 2 → 2 QCD scattering

processes, that is, X consists of only one parton, and its phase space is trivial and leads to the

δ(1−w) factor in Eq. (8). We do not need to present the cross sections here, which have been

known for a long time for both the unpolarized and the polarized cases [17]. There are actually

only four generic reactions, qq′ → qq′, qq → qq, qq̄ → gg, and gg → gg; all other processes

follow from crossing if one works in terms of helicity amplitudes for each reaction, keeping all

particles polarized. All tree-level 2 → 2 helicity amplitudes are given in [18]. The four generic

processes give rise to the ten separate LO channels

qq′ → qX

qq̄′ → qX

qq̄ → q′X

qq → qX

qq̄ → qX

qq̄ → gX

qg → qX

qg → gX

gg → gX

gg → qX , (12)

the “observed” final-state parton fragmenting into the hadron. At NLO, we have O(αs) cor-

rections to the above reactions, and also the additional new processes

qq′ → gX

qq̄′ → gX

qq → gX

qg → q′X

qg → q̄′X

qg → q̄X . (13)

A single-inclusive-parton cross section is, of course, not a priori infrared-finite in QCD, but

sensitive to long-distance dynamics through the presence of collinear singularities that arise

when the momenta of partons in the initial or final states become parallel. Such a situation can

appear for the first time atO(α3
s) (NLO), where 2 → 3 scattering diagrams contribute. From the

factorization theorem discussed above it follows that long-distance sensitive contributions may

5

The LO partonic cross sections d∆σ̂c,(0)
ab (v) are calculated from the 2 → 2 QCD scattering

processes, that is, X consists of only one parton, and its phase space is trivial and leads to the

δ(1−w) factor in Eq. (8). We do not need to present the cross sections here, which have been

known for a long time for both the unpolarized and the polarized cases [17]. There are actually

only four generic reactions, qq′ → qq′, qq → qq, qq̄ → gg, and gg → gg; all other processes

follow from crossing if one works in terms of helicity amplitudes for each reaction, keeping all

particles polarized. All tree-level 2 → 2 helicity amplitudes are given in [18]. The four generic

processes give rise to the ten separate LO channels

qq′ → qX

qq̄′ → qX

qq̄ → q′X

qq → qX

qq̄ → qX

qq̄ → gX

qg → qX

qg → gX

gg → gX

gg → qX , (12)

the “observed” final-state parton fragmenting into the hadron. At NLO, we have O(αs) cor-

rections to the above reactions, and also the additional new processes

qq′ → gX

qq̄′ → gX

qq → gX

qg → q′X

qg → q̄′X

qg → q̄X . (13)

A single-inclusive-parton cross section is, of course, not a priori infrared-finite in QCD, but

sensitive to long-distance dynamics through the presence of collinear singularities that arise

when the momenta of partons in the initial or final states become parallel. Such a situation can

appear for the first time atO(α3
s) (NLO), where 2 → 3 scattering diagrams contribute. From the

factorization theorem discussed above it follows that long-distance sensitive contributions may

5

9



 Try a more general numerical approach : how to deal with divergencies?
• Example: consider just one final state collinear sin-

gularity

• qq → qqg when q ‖ g carring a fraction (1-x)/x of the
‘parent’ quark

k

k k
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1

2 k
3

p

2
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x

1-x

k
4

=x P

k
5
=(1-x)P

~

lim
k4·k5→0

|Mqq−>qqg
tree |2 −→

4πµ2εαs

k4 · k5
Pgq(x) |Mqq−>qq

tree |2

• Subtraction Method
R. Ellis, D. Ross, A. Terrano (1981); Z.Kunszt, D. Soper (1992)
∫

dPS3

(
|Mqq−>qqg

tree |2 − lim
k4·k5→0

|Mqq−>qqg
tree |2

)
+

∫
dPS3 lim

k4·k5→0
|Mqq−>qqg
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• First term is convergent: can be computed numeri-
cally

• Second term is easy and universal: compute it once
and use it for any process

∼
1

ε

∫
dx Pgq(x)
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|Mqq−>qqg
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]

• Generalized to deal with all possible soft and collinear
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|η| < 1

√
S = 200GeV

25 GeV > pjet
T > 10 GeV

pπ
T > 2 GeV

5

by ∆φ ≡ |φπ − φjet| > 2 to ensure the pion and jets are produced from ‘opposite-side’ partons.

Finally, the jets are defined according to the cone algorithm with R=0.7.

FIG. 1: Unpolarized (solid) and polarized (dashes) NLO K-factors. The choice of the factorization and

renormalization scales corresponds to µF = µR =
(

pπ
T + pjet

T

)

/2.

The size of radiative QCD corrections to a given hadronic process is often displayed in terms

of a ‘K-factor’ which represents the ratio of the NLO over LO results. In the calculation of the

numerator of K one obviously has to use NLO-evolved parton densities. As far as the denominator

is concerned, a natural definition requires the use of LO-evolved parton densities. In the polarized

case, a problem arises for such a definition: since the polarized pdfs are not as well constrained

as the unpolarized ones, it might happen that quite different results for the ∆f ’s can emerge

when the fit is performed at LO or at NLO. This is particularly enhanced by the fact that the

polarized pdfs have nodes. Therefore, the ‘K-factor’ for a given process, defined using LO parton

densities in the denominator could be largely affected by the fact that some polarized densities

are at present not well constrained. In order to avoid this problem, we define the ‘K-factor’ as

the ratio between the NLO and the ‘Born’ cross-section, where the latest corresponds to the use

of NLO-evolved parton densities (and 2-loop expression for αs) when evaluating the lowest-order

partonic cross-sections in the denominator. Nevertheless, it is important to remember that the

‘K-factor’ is not a physical quantity and just provides a number to ‘quantify’ the effect of the

higher order corrections.

In the unpolarized case, we use the MRST2002 parton distributions [15]. Differences of the
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polarized pdfs have nodes. Therefore, the ‘K-factor’ for a given process, defined using LO parton

densities in the denominator could be largely affected by the fact that some polarized densities

are at present not well constrained. In order to avoid this problem, we define the ‘K-factor’ as
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of NLO-evolved parton densities (and 2-loop expression for αs) when evaluating the lowest-order

partonic cross-sections in the denominator. Nevertheless, it is important to remember that the

‘K-factor’ is not a physical quantity and just provides a number to ‘quantify’ the effect of the

higher order corrections.

In the unpolarized case, we use the MRST2002 parton distributions [15]. Differences of the

jet cone R = 0.7

π+ + jet  NLO

  Corrections are large:  > 50% for unpolarized

  Corrections are not trivial : asymmetry is reduced at NLO

K =
σNLO

σLO

z ≡ pπ
T

pjet
T

NLO effect
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7

resummation of the dominant terms is required in the case of fixed-target energy experiments,

where the ‘K-factors’ largely exceed those found here, but not for a collider running at
√

s = 200

GeV. Particularly, the effect of the resummation over the corresponding asymmetries is rather

small [20]. Considering that the dominant soft contributions for the hadron+jet observable origi-

nate from the same Sudakov form factors than in the inclusive case, we believe those effects can

also be neglected in a first approach here.

A reliable error estimate on our NLO results requires some knowledge on the size of the un-

calculated higher-order terms. The best we can do, before higher-order terms are computed, is

to study the dependence of the full NLO results on the renormalization and factorization scales.

Although physical observables are obviously independent of the scales, theoretical predictions do

have such a dependence, arising from the truncation of the perturbative expansion at a fixed order

in the coupling constant αs. A large dependence on the scales, therefore, implies a large theo-

retical uncertainty. In order to show how the scale dependence is substantially reduced once the

next-to-leading order corrections are included we will compare to the Born result. For the sake of

presentation we set all the scales to be equal, and vary them by a factor of two up and down with

respect to the default choice, i.e, µF = µR = µ
(

pπ
T + pjet

T

)

/2 with µ = 1/2, 1, 2. Figure 2 plots

the corresponding scale dependence of the unpolarized (left) and polarized (right) cross-sections,

were we observe a considerable reduction when the NLO corrections are included. Nevertheless,

it is worth noticing that the scale dependence is still rather large at NLO for the unpolarized

cross-section, of the order of ±20% or more (compared to about ±80% at the Born level). The

scale dependence is much smaller in the polarized case, even reaching the stage in which at some

kinematics the NLO cross-section evaluated at µ = 2 is larger than the one at µ = 1/2, opposite

to the LO expectation. Since the uncertainty in the unpolarized cross-section directly contributes

to the one for the asymmetry, one might consider the convenience of using directly ∆σ, instead of

the asymmetry, to extract the polarized parton distributions with a considerably better theoretical

accuracy.

III. PHENOMENOLOGY

As discussed in the introduction, counting with the jet kinematics allows to impose cuts that

enhance the relevance of some kinematical region in the momentum fractions x1,2 and z. That

can be observed in Figure 3, were we plot the average value of the momentum 〈x〉 [24] and

hadronization 〈z〉 fractions for unpolarized single-π+ production (solid) and the corresponding

 Considerable reduction in scale dependence at NLO

 Still ~20 % at NLO  (80 % at LO)

 Result very stable in polarized case : measure 
    polarized cross-section instead of asymmetry?

NLO perturbative stability
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8

one for π++jet (dashes), in both cases in terms of the transverse momentum of the pion. While

the averages are relatively similar for x, the change is quite clear for the fragmentation fraction

z. Whereas for single-hadron production 〈z〉 ∼ 0.6 − 0.7 remains almost constant over the full

kinematical range, it shows a large variation, from 0.2 to 0.8, when the opposite jet is required.

The rise of 〈z〉 with the transverse momentum of the pion can be easily understood from simple

FIG. 3: Average of the partonic momentum fractions x and z for single pion production (solid) and pion

accompanied by a jet with pjet
T > 10 GeV (dashes).

physical considerations. At the Born level, only two final state partons are produced, with opposite

transverse momentum. For that kinematics, the pion is produced by the fragmentation of one of

the partons, while the jet is just formed by the other one. Therefore, the ratio between the

transverse momentum of the pion and the one of the jet is exactly the hadronization fraction z.

Once a jet cut is applied, selecting the transverse momentum of the pion is equivalent to selecting

the fraction of momentum that is transferred from the parton in the hadronization process. It is

worth noticing that at the Born level, counting with the jet and hadron kinematics allows to fully

reconstruct all the momentum fractions as

z ≡
ph

T

pjet
T

x1 ≡
(

pjet
T exp(ηjet) + pjet

T exp(ηh)
)

/
√

s (3)

x2 ≡
(

pjet
T exp(−ηjet) + pjet

T exp(−ηh)
)

/
√

s.

While those relations are not valid at NLO, since one more parton can be radiated, still one can

observe that there is a strong correlation between the ‘real’ momentum fractions (the arguments

of the parton distributions and fragmentation functions in Eq.(1)) and those obtained from the

  Relation between ‘measured’ and ‘real’ x and z at NLO

‘Measured’ ‘Real’

Di(z)

fi(x1,2)

Symmetric in x1 and x2

  Differential cross-sections

10-15% differenceagreement at % level

FIG. 11: Asymmetries measured by STAR at RHIC for π− (left) and π+ (right) compared to the prediction

from different sets of polarized pdfs. The theoretical predictions were corrected to account for the jet trigger

efficiency.

main effect of the trigger is to enhance the contribution from large pjet
T with respect to the small

pjet
T events and, therefore, increase the average 〈x〉 resulting in larger asymmetries.

With the present experimental accuracy it is not yet possible to perform a precise extraction

of the polarized gluon density from this observable. Nevertheless, the data can already rule out

any possible scenario with a large gluon polarization in the range 0.05 ! x ! 0.3. For that

purpose we include in Figure 11 the prediction from the set GRSV-max set, where the polarized

gluon distribution is assumed to be equal to the unpolarized density at the very low intial scale of

µ2 = 0.4 GeV2. That set completely overestimates the experimental data at small z. Therefore,

in line with other measurements performed at RHIC, the preliminary data confirms the results

from the global anaylsis in [6] and points out to a small gluon polarization in the proton.

V. CONCLUSIONS

It is shown that the perturbative stability of the hadron+jet cross-section improves considerably

after including the NLO contributions. The corrections are found to be non-trivial: ‘K−factors’

are larger for the unpolarized cross-section than for the polarized one, resulting in a reduction of

the asymmetry at NLO. The possibility of looking at charged pions accompanied by a back-to-

back jet is studied phenomenologically in detail, finding that the asymmetries for π prodution, in

dominant range 0.1 ! z ! 0.5
14
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FIG. 4: Correlations between the ‘measured’ and ‘real’ x (left) and z (right).

measured observables in Eq.(3). The correlations found for π+ production in unpolarized collisions

are plotted in Figure 4. Considering a bin of size 0.05 (0.1) for x (z), we find that about 90% (60%)

of the generated (weighted) events in the MonteCarlo implementation of the NLO corrections give

the same value for the ‘real’ and ‘measured’ momentum fractions, at least in the kinematical range

where their contribution to the cross-section is dominant.

FIG. 5: NLO unpolarized cross-section in terms of the ‘measured’ (solid) and ‘real’ (dashes) partonic

momentum fractions x (left) and z (right)

The situation is also visible when the cross-section is plotted in terms of the same variables, as

shown in Figure 5. In the dominant range of 0.05 ! x ! 0.3, the agreement between the ‘measured’

cross-section and the one obtained in terms of the ‘real’ momentum fraction is at the percent level.

The use of the variables in Eq.(3) can therefore allow for an accurate reconstruction of the initial

bin size 0.05 : 90 % correlation

  Correlations between ‘measured’ and ‘real’ x and z

Generate ‘events’ at NLO and compare 

bin size 0.1: 60 % correlation

Still use global fit at NLO (not naive parton model assumptions) 
but correlation already interesting
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  Counting with the jet helps!

8

one for π++jet (dashes), in both cases in terms of the transverse momentum of the pion. While

the averages are relatively similar for x, the change is quite clear for the fragmentation fraction
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kinematical range, it shows a large variation, from 0.2 to 0.8, when the opposite jet is required.
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physical considerations. At the Born level, only two final state partons are produced, with opposite

transverse momentum. For that kinematics, the pion is produced by the fragmentation of one of

the partons, while the jet is just formed by the other one. Therefore, the ratio between the

transverse momentum of the pion and the one of the jet is exactly the hadronization fraction z.

Once a jet cut is applied, selecting the transverse momentum of the pion is equivalent to selecting

the fraction of momentum that is transferred from the parton in the hadronization process. It is

worth noticing that at the Born level, counting with the jet and hadron kinematics allows to fully

reconstruct all the momentum fractions as

z ≡
ph

T

pjet
T

x1 ≡
(

pjet
T exp(ηjet) + pjet

T exp(ηh)
)

/
√

s (3)

x2 ≡
(

pjet
T exp(−ηjet) + pjet

T exp(−ηh)
)

/
√

s.

While those relations are not valid at NLO, since one more parton can be radiated, still one can

observe that there is a strong correlation between the ‘real’ momentum fractions (the arguments

of the parton distributions and fragmentation functions in Eq.(1)) and those obtained from the

Inclusive vs ‘Exclusive’ average of momentum fractions x and z

Selecting momentum of pion is like selecting z

Use that possibility to enhance some partonic channel
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  For inclusive pions : gg only relevant at small transverse momentum

  More exclusive observable allows to enhance sensitivity on

  With pion+jet : gg sizable for a wide range of z

∆G

  Sensitivity full z range ~ small transverse momentum
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state momentum fractions x1,2. In the case of the z distributions, the differences between the

FIG. 6: Contribution to the cross-section from the gg (solid), qg (dashes) and qq (dots) channels in terms

of the transverse momentum of the pion (left) and the variable z =
pπ

T

pjet
T

(right).

‘real’ and the ‘measured’ quantities can reach up to 10 − 15%. However, it still becomes quite

FIG. 7: Contribution to the cross-section from the gg (solid), qg (dashes) and qq (dots) channels in terms

of x

useful to plot the cross-section in terms of it. This is mainly because, by selecting a range in z,

one can enhance or decrease the contribution from some partonic channel due to the particular

behavior of the fragmentation functions. This feature can be observed in Figure 6, where we show

the fractional contribution to the NLO unpolarized cross-section from the gg, qg and qq initial

  Similar features in terms of momentum fraction x
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DSSV best fit from global analysis : small gluon polarization
GRSV(std) : larger polarization (> upper limit allowed by data)  
GS(C) :  small polarization at medium x but much larger at small x

 Use 3 different sets of polarized pdfs   

11

state partonic channels [25]. If the cross-section is analyzed in terms of the transverse momentum

of the hadron, as it happens for the single-inclusive case, the pure gluonic channel contribution gg

becomes only sizable at small values of pπ
T and then decreases rapidly, making the cross-section

less sensitive on the gluonic content of the proton. The situation changes when the same results

are studied in terms of the variable z. Here the gg channel shows a larger fractional contribution

over the entire kinematical range at expenses of a suppression of the pure quark channels, that

at most account for only 20% of the cross-section, providing an ideal scenario to extract ∆g in

polarized collisions. Something similar occurs for the same observable plotted in terms of the

variable x, as shown in Figure 7. The analyses confirm that hadron+jet production in hadronic

collisions, in terms of both dimensionless variables x and z, provides a clear source of information

on the gluon distribution. In the next section we will look directly at the correspondent sensitivity

on ∆g in polarized pp collisions.

IV. ASYMMETRIES AT RHIC AND SENSITIVITY ON ∆g

In order to analyze the sensitivity of the process on the polarized gluon distribution, we will

compute the NLO asymmetries with 3 different sets of spin-dependent densities: DSSV [6], GRSV

(standard) [21] and GS-C [22]. The corresponding NLO distributions at Q2 = 50 GeV2, a typical

scale for this process, are shown in the left-hand side of Figure 8. As can be observed, the

expectations from the three sets are quite different. While the DSSV distribution corresponds to

FIG. 8: Polarized gluon density at Q2 = 50 GeV2 from different sets of polarized pdfs (left) and their

ratios to the unpolarized distribution (right).
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 z dependence Asymmetries  < 1%

Dπ+
q (z) ∼ Dπ−

q (z) result becomes ~ charge independent

 At large z :  ‘favored’ fragmentation dominates

 At small z

∆g (∆u Dπ
u(z) + ∆d Dπ

d (z))

∆g (∆u Dπ
u(z) + ∆d Dπ

d (z))

∆g (∆u Dπ
u(z) + ∆d Dπ

d (z))π+

π−

+               -
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 x dependence : sensitivity increased π−

 Follows the pattern of ∆g/g
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FIG. 11: Asymmetries measured by STAR at RHIC for π− (left) and π+ (right) compared to the prediction

from different sets of polarized pdfs. The theoretical predictions were corrected to account for the jet trigger

efficiency.

main effect of the trigger is to enhance the contribution from large pjet
T with respect to the small

pjet
T events and, therefore, increase the average 〈x〉 resulting in larger asymmetries.

With the present experimental accuracy it is not yet possible to perform a precise extraction

of the polarized gluon density from this observable. Nevertheless, the data can already rule out

any possible scenario with a large gluon polarization in the range 0.05 ! x ! 0.3. For that

purpose we include in Figure 11 the prediction from the set GRSV-max set, where the polarized

gluon distribution is assumed to be equal to the unpolarized density at the very low intial scale of

µ2 = 0.4 GeV2. That set completely overestimates the experimental data at small z. Therefore,

in line with other measurements performed at RHIC, the preliminary data confirms the results

from the global anaylsis in [6] and points out to a small gluon polarization in the proton.

V. CONCLUSIONS

It is shown that the perturbative stability of the hadron+jet cross-section improves considerably

after including the NLO contributions. The corrections are found to be non-trivial: ‘K−factors’

are larger for the unpolarized cross-section than for the polarized one, resulting in a reduction of

the asymmetry at NLO. The possibility of looking at charged pions accompanied by a back-to-

back jet is studied phenomenologically in detail, finding that the asymmetries for π prodution, in

TH results modified according to trigger efficiency
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main effect of the trigger is to enhance the contribution from large pjet
T with respect to the small

pjet
T events and, therefore, increase the average 〈x〉 resulting in larger asymmetries.

With the present experimental accuracy it is not yet possible to perform a precise extraction

of the polarized gluon density from this observable. Nevertheless, the data can already rule out

any possible scenario with a large gluon polarization in the range 0.05 ! x ! 0.3. For that

purpose we include in Figure 11 the prediction from the set GRSV-max set, where the polarized

gluon distribution is assumed to be equal to the unpolarized density at the very low intial scale of

µ2 = 0.4 GeV2. That set completely overestimates the experimental data at small z. Therefore,

in line with other measurements performed at RHIC, the preliminary data confirms the results

from the global anaylsis in [6] and points out to a small gluon polarization in the proton.

V. CONCLUSIONS

It is shown that the perturbative stability of the hadron+jet cross-section improves considerably

after including the NLO contributions. The corrections are found to be non-trivial: ‘K−factors’

are larger for the unpolarized cross-section than for the polarized one, resulting in a reduction of

the asymmetry at NLO. The possibility of looking at charged pions accompanied by a back-to-

back jet is studied phenomenologically in detail, finding that the asymmetries for π prodution, in

Larger asymmetries: bias towards larger pT

 Still large errors to deserve ‘global fit treatment’ :  technique available 

 Comparison to STAR data (not corrected for trigger effects)

 Data consistent with small gluon polarization in range 

 Experimental work : analysis in terms of x 

 500 GeV : smaller x
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Conclusions

 More exclusive observables allow a more detailed analysis of polarized gluon

 Pion+jet : ‘precise’ reconstruction of momentum fractions

 Sensitivity to       

 Preliminary data compatible with ‘very’ small gluon polarization (DSSV-like)

∆G in 0.05 ! x ! 0.3
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